본문 바로가기

Biusiness Insight/Gen AI · Data Analytics

[구글 클라우드] 분산 학습 TensorFlow 모델 (Estimator API 사용)

반응형

 

(source : GCP qwiklabs)

 

- Jupyter Notebook 실습 코드 

d_traineval.html
0.27MB

 

- Jupyter Notebook 실습 코드 : 정답  포함

d_traineval_solution.html
0.28MB

 

1. 패키지 import

from google.cloud import bigquery
import tensorflow as tf
import numpy as np
import shutil
print(tf.__version__)

 

2. 입력

CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key']
LABEL_COLUMN = 'fare_amount'
DEFAULTS = [[0.0], [-74.0], [40.0], [-74.0], [40.7], [1.0], ['nokey']]

def read_dataset(filename, mode, batch_size = 512):
      def decode_csv(value_column):
          columns = tf.decode_csv(value_column, record_defaults = DEFAULTS)
          features = dict(zip(CSV_COLUMNS, columns))
          label = features.pop(LABEL_COLUMN)
          # No need to features.pop('key') since it is not specified in the INPUT_COLUMNS.
          # The key passes through the graph unused.
          return features, label

      # Create list of file names that match "glob" pattern (i.e. data_file_*.csv)
      filenames_dataset = tf.data.Dataset.list_files(filename)
      # Read lines from text files
      textlines_dataset = filenames_dataset.flat_map(tf.data.TextLineDataset)
      # Parse text lines as comma-separated values (CSV)
      dataset = textlines_dataset.map(decode_csv)

      # Note:
      # use tf.data.Dataset.flat_map to apply one to many transformations (here: filename -> text lines)
      # use tf.data.Dataset.map      to apply one to one  transformations (here: text line -> feature list)

      if mode == tf.estimator.ModeKeys.TRAIN:
          num_epochs = None # indefinitely
          dataset = dataset.shuffle(buffer_size = 10 * batch_size)
      else:
          num_epochs = 1 # end-of-input after this

      dataset = dataset.repeat(num_epochs).batch(batch_size)
      
      return dataset

 

 

3. 입력 데이터에서 features 생성

INPUT_COLUMNS = [
    tf.feature_column.numeric_column('pickuplon'),
    tf.feature_column.numeric_column('pickuplat'),
    tf.feature_column.numeric_column('dropofflat'),
    tf.feature_column.numeric_column('dropofflon'),
    tf.feature_column.numeric_column('passengers'),
]

def add_more_features(feats):
    # Nothing to add (yet!)
    return feats

feature_cols = add_more_features(INPUT_COLUMNS)

 

 

4. Serving input function 

# Defines the expected shape of the JSON feed that the model
# will receive once deployed behind a REST API in production.
def serving_input_fn():
    json_feature_placeholders = {
        'pickuplon' : tf.placeholder(tf.float32, [None]),
        'pickuplat' : tf.placeholder(tf.float32, [None]),
        'dropofflat' : tf.placeholder(tf.float32, [None]),
        'dropofflon' : tf.placeholder(tf.float32, [None]),
        'passengers' : tf.placeholder(tf.float32, [None]),
    }
    # You can transforma data here from the input format to the format expected by your model.
    features = json_feature_placeholders # no transformation needed
    return tf.estimator.export.ServingInputReceiver(features, json_feature_placeholders)

 

 

5. tf.estimator.train_and_evaluate

def train_and_evaluate(output_dir, num_train_steps):
    estimator = tf.estimator.LinearRegressor(
                       model_dir = output_dir,
                       feature_columns = feature_cols)
    
    train_spec=tf.estimator.TrainSpec(
                       input_fn = lambda: read_dataset('./taxi-train.csv', mode = tf.estimator.ModeKeys.TRAIN),
                       max_steps = num_train_steps)

    exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)

    eval_spec=tf.estimator.EvalSpec(
                       input_fn = lambda: read_dataset('./taxi-valid.csv', mode = tf.estimator.ModeKeys.EVAL),
                       steps = None,
                       start_delay_secs = 1, # start evaluating after N seconds
                       throttle_secs = 10,  # evaluate every N seconds
                       exporters = exporter)
    
    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)

 

 

6. TensorBoard 에서 학습 모니터링

OUTDIR = './taxi_trained'

- JupyterLab UI > "File" - "New Launcher" > 'Tensorboard' 더블 클릭

 

7. Training (학습)

# Run training    
shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time
tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file
train_and_evaluate(OUTDIR, num_train_steps = 500)

 

 

반응형