반응형
(source : GCP qwiklabs)
- Jupyter Notebook 실습 코드
- Jupyter Notebook 실습 코드 : 정답 포함
1. 패키지 import
from google.cloud import bigquery
import tensorflow as tf
import numpy as np
import shutil
print(tf.__version__)
2. 입력
CSV_COLUMNS = ['fare_amount', 'pickuplon','pickuplat','dropofflon','dropofflat','passengers', 'key']
LABEL_COLUMN = 'fare_amount'
DEFAULTS = [[0.0], [-74.0], [40.0], [-74.0], [40.7], [1.0], ['nokey']]
def read_dataset(filename, mode, batch_size = 512):
def decode_csv(value_column):
columns = tf.decode_csv(value_column, record_defaults = DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
# No need to features.pop('key') since it is not specified in the INPUT_COLUMNS.
# The key passes through the graph unused.
return features, label
# Create list of file names that match "glob" pattern (i.e. data_file_*.csv)
filenames_dataset = tf.data.Dataset.list_files(filename)
# Read lines from text files
textlines_dataset = filenames_dataset.flat_map(tf.data.TextLineDataset)
# Parse text lines as comma-separated values (CSV)
dataset = textlines_dataset.map(decode_csv)
# Note:
# use tf.data.Dataset.flat_map to apply one to many transformations (here: filename -> text lines)
# use tf.data.Dataset.map to apply one to one transformations (here: text line -> feature list)
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size = 10 * batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(num_epochs).batch(batch_size)
return dataset
3. 입력 데이터에서 features 생성
INPUT_COLUMNS = [
tf.feature_column.numeric_column('pickuplon'),
tf.feature_column.numeric_column('pickuplat'),
tf.feature_column.numeric_column('dropofflat'),
tf.feature_column.numeric_column('dropofflon'),
tf.feature_column.numeric_column('passengers'),
]
def add_more_features(feats):
# Nothing to add (yet!)
return feats
feature_cols = add_more_features(INPUT_COLUMNS)
4. Serving input function
# Defines the expected shape of the JSON feed that the model
# will receive once deployed behind a REST API in production.
def serving_input_fn():
json_feature_placeholders = {
'pickuplon' : tf.placeholder(tf.float32, [None]),
'pickuplat' : tf.placeholder(tf.float32, [None]),
'dropofflat' : tf.placeholder(tf.float32, [None]),
'dropofflon' : tf.placeholder(tf.float32, [None]),
'passengers' : tf.placeholder(tf.float32, [None]),
}
# You can transforma data here from the input format to the format expected by your model.
features = json_feature_placeholders # no transformation needed
return tf.estimator.export.ServingInputReceiver(features, json_feature_placeholders)
5. tf.estimator.train_and_evaluate
def train_and_evaluate(output_dir, num_train_steps):
estimator = tf.estimator.LinearRegressor(
model_dir = output_dir,
feature_columns = feature_cols)
train_spec=tf.estimator.TrainSpec(
input_fn = lambda: read_dataset('./taxi-train.csv', mode = tf.estimator.ModeKeys.TRAIN),
max_steps = num_train_steps)
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec=tf.estimator.EvalSpec(
input_fn = lambda: read_dataset('./taxi-valid.csv', mode = tf.estimator.ModeKeys.EVAL),
steps = None,
start_delay_secs = 1, # start evaluating after N seconds
throttle_secs = 10, # evaluate every N seconds
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
6. TensorBoard 에서 학습 모니터링
OUTDIR = './taxi_trained'
- JupyterLab UI > "File" - "New Launcher" > 'Tensorboard' 더블 클릭
7. Training (학습)
# Run training
shutil.rmtree(OUTDIR, ignore_errors = True) # start fresh each time
tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file
train_and_evaluate(OUTDIR, num_train_steps = 500)
반응형
'Biusiness Insight > Gen AI · Data Analytics' 카테고리의 다른 글
[구글 클라우드] 텐서플로우를 활용한 머신러닝 예제 (0) | 2020.05.04 |
---|---|
[구글 클라우드] TensorFlow 스케일링 - AI Platform Training 서비스 활용 (0) | 2020.04.25 |
[구글 클라우드] 배치 기반 TensorFlow 스케일업 (0) | 2020.04.22 |
[구글 클라우드] Estimator API 사용해서 AI 모델 구현 (TensorFlow) (0) | 2020.04.21 |
[구글 클라우드] Machine Learning APIs 활용하기 (0) | 2020.04.20 |