반응형
LLM (Large Language Model) Reading List
- NLP's ImageNet moment has arrived (NLP ImageNet 시대의 도래) : https://thegradient.pub/nlp-imagenet/
- Google Cloud supercharges NLP with large language models (Google Cloud 대규모 언어모델로 NLP강화) : https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-supercharges-nlp-with-large-language-models
- LaMDA: our breakthrough conversation technology (LaMDA : Google의 혁신적인 대화 기술) : https://blog.google/technology/ai/lamda/
- Language Models are Few-Shot Learners (언어 모델의 퓨샷(Few-Shot) 학습) :
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64aPaper.pdf - PaLM-E: An embodied multimodal language model (PaLM-E: 내장 멀티모달 언어 모델) :
https://ai.googleblog.com/2023/03/palm-e-embodied-multimodal-language.html - Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance
(PaLM: 획기적인 성능을 위해 5,400억 개의 매개변수로 확장) :
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html - The Powerof Scale for Parameter-Efficient Prompt Tuning (매개변수 효율적 프롬프트 미세 조정의 확장) :
https://arxiv.org/pdf/2104.08691.pdf - Google Research, 2022 & beyond: Language, vision and generative models (2022년 이후 Google Research 언어모델) :
https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html#LanguageModels - Accelerating text generation with Confident Adaptive Language Modeling (CALM)
(CALM을 통한 보다 빠른 텍스트 생성) : https://ai.googleblog.com/2022/12/accelerating-text-generation-with.html - Solving a machine-learning mystery (머신러닝에 대한 의문점 해소):
https://news.mit.edu/2023/large-language-models-in-context-learning-0207
생성형 AI (Generative AI) Reading List
- Ask a Techspert: What is generative AI? (기술 전문가에게 질문하기:생성형 AI란 무엇인가요?) :
https://blog.google/inside-google/googlers/ask-a-techspert/what-is-generative-ai/ - Build new generative AI powered search & conversational experiences with Gen App Builder (생성형 앱 빌더를 사용한 새로운 생성형AI 기반 검색 및 대화형 환경 빌드) :
https://cloud.google.com/blog/products/ai-machine-learning/create-generative-apps-inminutes-with-gen-app-builder - What is generative AI? (생성형 AI란 무엇인가요?)
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-generative-ai - Google Research, 2022 & beyond: Language, vision and generative models (2022년 이후 Google Research 생성 모델) :
https://ai.googleblog.com/2023/01/google-research-2022-beyond-language.html#GenerativeModels - Building the most open and innovative AI ecosystem (가장 개방적이고 혁신적인 AI 생태계 구축) :
https://cloud.google.com/blog/products/ai-machine-learning/building-an-open-generative-ai-partner-ecosystem - Generative AI is here. Who Should Control It? (생성형 AI의 등장, 누가 통제할 것인가?) :
https://www.nytimes.com/2022/10/21/podcasts/hard-fork-generative-artificial-intelligence.html - Stanford U & Google’s Generative Agents Produce Believable Proxies of Human Behaviors (인간의 행동에 대한 신뢰할 수 있는 프록시를 만드는 스탠포드 대학교와 Google의 생성형 에이전트) :
https://syncedreview.com/2023/04/12/stanford-u-googles-generative-agents-produce-believable-proxies-of-human-behaviours/ - Generative AI: Perspectives from Stanford HAI (생성형 AI : Stanford HAI의 견해) :
https://hai.stanford.edu/sites/default/files/2023-03/Generative_AI_HAI_Perspectives.pdf - Generative AI at Work (업무에 사용되는 생성형 AI) :
https://www.nber.org/system/files/working_papers/w31161/w31161.pdf - Thefuture of generative AI is niche, not generalized (보편화되기보다는 전문화될 생성형 AI의 미래) :
https://www.technologyreview.com/2023/04/27/1072102/the-future-of-generative-ai-is-niche-not-generalized/ - Theimplications of Generative AI for businesses (생성형 AI가 비즈니스에 미치는 영향) :
https://www2.deloitte.com/us/en/pages/consulting/articles/generative-artificial-intelligence.html - Proactive Risk Management in Generative AI (생성형 AI의 사전 예방적 위험 관리) :
https://www2.deloitte.com/us/en/pages/consulting/articles/responsible-use-of-generative-ai.html - How Generative AI Is Changing Creative Work (생성형 AI가 창의적인 작업을 변화시키는 방식) :
https://hbr.org/2022/11/how-generative-ai-is-changing-creative-work
기타 Reading List
- Attention is All You Need (어텐션이 필요한 전부입니다, 관심을 기울이기만 하면됩니다) :
https://research.google/pubs/pub46201/ - Transformer : A Novel Neural Network Architecture for Language Understanding (트랜스포머: 언어 이해를 위한 새로운 신경망 아키텍처 :
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html - Transformer on Wikipedia (Wikipedia의 트랜스포머) :
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)#:~:text=Transformers%20were%20introduced%20in%202017,allowing%20training%20on%20larger%20datasets - What isTemperature in NLP? (NLP 강도의 의미) :
https://lukesalamone.github.io/posts/what-is-temperature/ - Bard now helps you code (코딩을 도와주는 Bard) : https://blog.google/technology/ai/code-with-bard/
- Vertex AI의 Model Garden : https://cloud.google.com/model-garden
- Auto-generated Summaries in Google Docs (Google Docs의 자동 생성 요약) :
https://ai.googleblog.com/2022/03/auto-generated-summaries-in-google-docs.html
(Source : Google Cloud)
반응형
'Biusiness Insight > Data Science' 카테고리의 다른 글
분석/학습용 공개 데이터 세트들 (Public Dataset Resources) 링크 포함 (0) | 2024.07.21 |
---|---|
[Python] Seaborn을 활용한 시각화 실습 (0) | 2024.06.30 |
[Python] Seaborn을 활용한 시각화 - seaborn stats (0) | 2024.06.30 |
[Python] Seaborn을 활용한 시각화 (0) | 2024.06.30 |
[Python] Matplotlib을 활용한 시각화 실습 (0) | 2024.06.30 |